Entire Solutions of Reaction-diffusion Equations with Balanced Bistable Nonlinearities
نویسندگان
چکیده
This paper deals with entire solutions of a bistable reaction-diffusion equation for which the speed of the traveling wave connecting two constant stable equilibria is zero. Entire solutions which behave as two traveling fronts approaching, with super-slow speeds, from opposite directions and annihilating in a finite time are constructed by using a quasiinvariant manifold approach. Such solutions are shown to be unique up to space and time translations.
منابع مشابه
Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations
Abstract. We consider bounded solutions of the semilinear heat equation ut = uxx + f(u) on R, where f is of the unbalanced bistable type. We examine the ω-limit sets of bounded solutions with respect to the locally uniform convergence. Our goal is to show that even for solutions whose initial data vanish at x = ±∞, the ω-limit sets may contain functions which are not steady states. Previously, ...
متن کاملExamples of bounded solutions with nonstationary limit profiles for semilinear heat equations on R
We consider bounded solutions of the semilinear heat equation ut = uxx+f(u) on R, where f is of a bistable type. We show that there always exist bounded solutions whose ω-limit set with respect to the locally uniform convergence contains functions which are not steady states. For balanced bistable nonlinearities, there are examples of such solutions with initial values u(x, 0) converging to 0 a...
متن کاملEntire Solutions in Bistable Reaction-diffusion Equations with Nonlocal Delayed Nonlinearity
This paper is concerned with entire solutions for bistable reactiondiffusion equations with nonlocal delay in one-dimensional spatial domain. Here the entire solutions are defined in the whole space and for all time t ∈ R. Assuming that the equation has an increasing traveling wave solution with nonzero wave speed and using the comparison argument, we prove the existence of entire solutions whi...
متن کاملTraveling Wave Solutions for Bistable Differential-Difference Equations with Periodic Diffusion
We consider traveling wave solutions to spatially discrete reaction-diffusion equations with nonlocal variable diffusion and bistable nonlinearities. To find the traveling wave solutions we introduce an ansatz in which the wave speed depends on the underlying lattice as well as on time. For the case of spatially periodic diffusion we obtain analytic solutions for the traveling wave problem usin...
متن کاملThreshold Phenomena for Symmetric-decreasing Radial Solutions of Reaction-diffusion Equations
We study the long time behavior of positive solutions of the Cauchy problem for nonlinear reaction-diffusion equations in RN with bistable, ignition or monostable nonlinearities that exhibit threshold behavior. For L2 initial data that are radial and non-increasing as a function of the distance to the origin, we characterize the ignition behavior in terms of the long time behavior of the energy...
متن کامل